Application of bioassays for packaging safety evaluation

Benoît Schilter
Head of Food Safety Research Department,
Nestlé Research Center, Lausanne Switzerland

Food Packaging Forum workshop,
Scientific challenges in the risk assessment of food contact materials, Zürich, Oct. 5th, 2017
What is the problem?

- Identification
- Quantification
- Migration conditions
- Product applications
- Toxicology

- Not practical
- Not desirable

Is there a role/value for bioassays in safety assessment of such mixtures?
Why not?

Safety

- Novel foods
- Plant extracts
- Medical devices
- Water quality

In vitro tox

- > 1000 (Tox21)
- Human stem cells
- 3-D

mixtures

bioassays

Packaging

- Genotoxicity
- Endocrine act.

ISO

OECD

Research
The topic is increasingly discussed in context of packaging safety

- Quality/validation
- Limitations
- Data interpretation
What are bioassays?
In vitro hazard identification/characterization:

Hazard identification:
- MIEs/KEs (AOP/MOA)
- Stem cells/3D

Hazard characterization:
- Dose responses
- QIVIVE/Reverse dosimetry

Oral Point of departure

Exposure

Safety/MoE

Biodetection (occurrence):

In vitro tools designed:
- Molecular events
- Properties of tox relevance

In vitro tools designed:
- Molecular events
- Properties of tox relevance

In silico:
- Link to chemical structure, SAR
- Similarity

Mitigation

Manage

Exposure

Standard hazard id/RA
Example of nuclear receptor activation
transcriptional activation assay

CALUX = Chemical-Activated Luciferase Reporter Gene-Expression Assay

- Several hormone receptors available
- Agonist and antagonist modes

- ERα
- AR
- AhR
- GR
- TR
- PPARγ
- ...

-/+ S9 cytotox
Application of the Calux assay

Migration study:
• Analytical chemistry
• Bioassay

156 µg/L NP (LC-MS)
Example of genotoxicity assay

Gadd45α induction (Bluescreen)

- Cell's genotoxic stress response
- Identifies diverse genotoxic agents:
 - Direct acting
 - Others (with threshold)
- Possibility to apply metabolic system (S9)
- Cytotoxicity test included
- High sensitivity: little false negatives
- High specificity: little false positives
- Good within/between lab reproducibility
- Commercially available
- Getting increasing acceptance for screening
- Potential for improvement/optimization
Gadd45α induction in FCM-migrates of experimental material

Gaps and limitations need to be addressed:

- Relevance of migration studies (stability of the materials?)
- Identify causative agent(s)
 - Current analytical data did not reveal chemicals with alert for genotox (DNA-reactivity)
 - Test of identified NIAS ongoing
 - Fractionation planned
- Address mechanisms of genotoxicity
 - Mutagenic
 - No positive samples in Ames (no DNA reactive? Threshold?)
- …..
Why and When?

1. Safety by design
2. Application of the TTC
Safety by design: bioassay data on R&D materials.

<table>
<thead>
<tr>
<th>Biological activity</th>
<th>Coating 1</th>
<th>Coating 2</th>
<th>Coating 3</th>
<th>Coating 4</th>
<th>Coating 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-estrogenic (ERα)</td>
<td>+</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPARγ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-androgenic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AhR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gadd45α</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cytotoxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMES</td>
<td>*</td>
<td>*</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

EthOH, 95% concentration migration 10 days at 60°C

Bioassays DMSO
Good correlation analytical vs biological profile

GC/MS

N=3

Packaging material

- - - + ++ ++ +++

50%-Cytotoxicity
50%-Genotoxicity
A way forward (effect directed analysis)

Fractionation:
LC-HRMS platform coupled with a Waters fraction collector

- Monomers
- Additives
- Synthetic oligomers

<table>
<thead>
<tr>
<th>Fraction</th>
<th>genotox</th>
<th>endocrine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction 6</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fraction 7</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fraction 8</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fraction 9</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Fraction 10</td>
<td>--</td>
<td>✓</td>
</tr>
<tr>
<td>Fraction 11</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fraction 12</td>
<td>✓</td>
<td>--</td>
</tr>
<tr>
<td>Fraction 13</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
Safety by design:
evaluate raw materials early (e.g. monomers)

Compound A:
- PPAR\(\gamma\) antagonist effect
- No antagonistic effect on ER\(\alpha\)
- No agonistic effect on AR
Why and When?

1. Safety by design
2. Application of the TTC
Application of the Cramer class III-TTC to unknown NIAS (safety assessment)?

Exclude member of cohort of concern.
Exclude chemicals not covered by TTC.
TTC = 0.15 μg, if alert of genotox.
TTC = 18 μg, inh. AChE.

AhR; DR-Calux.
ER, AR assays
Ach-esterase inhibition
Genotoxicity assays
Proposed steps in assessment of unknowns

<table>
<thead>
<tr>
<th>Steps</th>
<th>What?</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Material characterization</td>
<td>Composition, manufacturing, processing, degradation, …</td>
<td>Exclude chemicals of high concern (cohort of concern)</td>
</tr>
</tbody>
</table>
| 2. Analytical methods | - Sample preparation
- Chromatographic techniques
- Detection methods
- Partial identification | |
| 3. Targeted analysis | - Methods for specific chemicals | |
| 4. Food intake | Material application, population, dietary habits | Estimate exposure |
| 5. Quantification | Quantification of unknowns | |

Adapted from Koster et al., *Fd Chem Tox* 49 (2011) 1643-60; Rennen et al., *Fd Chem. Tox* 49 (2011) 933-940
Genotox tests are sensitive:

\[
\text{Sensitivity} = \frac{\text{TP}}{\text{TP} + \text{FN}}
\]

TP: true positive
FN: false negative

Genotox tests are not sensitive:

Limits of detection (LoD) in mixture are currently poor:
- 0.15 μg/person
- risk \((10^{-6})\)
- 10 ppb
- 90 μg/person
Genotoxic:

- LoD can be improved, observed for key mechanisms
- Important for mixture testing
- Important to discriminate genotoxicity from cytotoxicity
- Depends upon:
 - *Type of assay*
 - *Culture conditions*
 - *Substances*
 - ...
 - Clearly insufficient (compared with LoD requirements)
 - **Need a breakthrough**

Other endpoints:

- Similar conclusion for Ach-esterase inhibition
- Less an issue for receptor mediated activation

<table>
<thead>
<tr>
<th>Type MoA Substances</th>
<th>LEC Standard protocol</th>
<th>LEC optimized protocol</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct DNA-damaging compounds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA alkylation or forming DNA adducts</td>
<td>0.1 mg/ml</td>
<td>0.01 mg/ml</td>
<td>10</td>
</tr>
<tr>
<td>AFB1</td>
<td>1.25 mg/ml</td>
<td>0.42 mg/ml</td>
<td>3</td>
</tr>
<tr>
<td>B(a)P</td>
<td>6.25 mg/ml</td>
<td>5.31 mg/ml</td>
<td>1</td>
</tr>
<tr>
<td>CPA</td>
<td>Not detected</td>
<td>0.5 mg/ml</td>
<td></td>
</tr>
<tr>
<td>Pyrene</td>
<td>34.0 mg/ml</td>
<td>1.16 mg/ml</td>
<td>29</td>
</tr>
<tr>
<td>Tamoxifen</td>
<td>46.31 mg/ml</td>
<td>25.0 mg/ml</td>
<td>1.8</td>
</tr>
<tr>
<td>N-nitrosodimethylamine (NDMA)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other endpoints:

- Similar conclusion for Ach-esterase inhibition
- Less an issue for receptor mediated activation
The way forward?
High performance thin layer chromatography (HPTLC)-bioassay

Discovery in surface/waste water

Bioassays: roles in packaging safety

To prioritize structurally uncharacterized chemicals with TTC-class III:
- To contribute to exclusion of chemicals of the cohort of concern
- To exclude ACHE-inhibitors and chemicals with genotoxic alert
- In combination with other parameters
- More sensitive methods required

To test for the presence of chemicals:
- Endocrine activity
- High toxic potency
- To be assessed/managed (early)

HPTLC-bioassay is likely to significantly improve the situation:
- May increase LoDs by orders of magnitude (e.g. genotox, AChE-inh, receptor med, …).
Chemical screening vs biodetection

final thoughts

Together with analytical chemistry, bioassays have a role to play in safety assessment of FCMs.
Acknowledgements:

Packaging Safety Group

Early warning Group

Chemical Food Safety Group

Thanks for your attention